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Abstract

This study investigates the application of the YOLOV5 object detection model to accurately identify and count post-larval
redclaw crayfish (Cherax quadricarinatus) across diverse aquaculture environments. A 2x2 factorial experimental design
was employed to examine the effects of environmental lighting (covered vs. open-air ponds) and biological molting status
(molted vs. non-molted) on detection performance. A dataset of 1,200 meticulously annotated images was collected under
controlled conditions and used to train and evaluate the YOLOV5s variant. Detection effectiveness was measured using
precision, recall, F1-score, and mean average precision at an loU threshold of 0.5 (MAP@0.5). Results showed that non-
molted crayfish in open-air ponds achieved the highest detection accuracy with an Fl-score of 0.93, whereas molted
crayfish in covered ponds exhibited the lowest performance with an F1-score of 0.85. Two-way ANOVA confirmed
significant main effects of lighting and molting status, as well as their interaction, on model accuracy (p < 0.05). These
findings highlight the critical roles of biological pigmentation and lighting conditions in optimizing object detection
accuracy for aquaculture monitoring. This study offers valuable insights toward practical applications of deep learning—
based monitoring systems for sustainable aquaculture operations.
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1. Introduction

Aguaculture has become an essential sector in global efforts to secure sustainable protein sources, especially as wild
fish stocks decline and climate change disrupts traditional agriculture. With the industry's growth, integrating automation
and intelligent systems is increasingly viewed as a key strategy to improve operational efficiency, reduce labor demands,
and mitigate environmental impacts [1-3].

Among the emerging technologies, computer vision combined with deep learning techniques shows significant
promise in automating critical monitoring tasks in aquaculture, such as species counting, aquaculture monitoring, and
health evaluation [4, 5]. Object detection models, particularly the YOLO (You Only Look Once) family, have gained
popularity due to their advantageous balance between detection speed and accuracy [6, 7]. The latest version, YOLOVS5,
has demonstrated superior performance across diverse real-time detection applications, including aquatic environments
[8]1.

Despite these advances, most prior studies have been conducted under controlled laboratory settings, limiting model
robustness in real-world aquaculture environments. For example, Chen, et al. [9] applied YOLOV5 to detect whiteleg
shrimp but did not fully address variability in lighting or biological factors such as molting. Environmental factors
including water turbidity and varying light penetration substantially affect detection accuracy [1, 10].

Biological variability, such as pigmentation changes during molting, complicates detection since the translucent
appearance post-molt reduces image contrast [11]. Existing research rarely considers interactions between environmental
lighting and biological conditions, highlighting a significant research gap [12].

Moreover, the quality and augmentation of datasets are crucial for enhancing detection model generalization.
Common augmentation methods include rotation, flipping, and brightness adjustment to mimic diverse real-world
conditions [3, 12]. Yet, comprehensive evaluations of these techniques across variable aquaculture settings remain scarce.

This study addresses these gaps by assessing the performance of YOLOvV5, an Al-driven visual object detection
model [7] for counting post-larval redclaw crayfish (Cherax quadricarinatus) under different environmental settings
(covered vs. open-air ponds) and biological states (molted vs. non-molted). Employing a factorial experimental design
alongside rigorous statistical validation methods such as ANOVA, this research seeks to provide empirical insights into
the practical applicability and limitations of Al-powered monitoring systems in aquaculture operations.

The findings contribute practical implications by advancing knowledge on deploying Al-based technologies in
dynamic aquatic environments, supporting sustainable aquaculture practices and informing future technological
innovation and policy formulation.

2. Theoretical Framework
2.1. Integration of Artificial Intelligence in Agriculture and Aquaculture

The application of artificial intelligence (Al) in agriculture and aquaculture has witnessed significant growth, driven
largely by advances in deep learning-based object detection techniques. Among these, the YOLO (You Only Look Once)
family of models has emerged as a foundational framework for real-time detection tasks, offering an effective balance
between speed and accuracy [6, 13] These models have been successfully applied across diverse domains, including fruit
detection in precision agriculture [14] livestock monitoring [4] and underwater fish tracking [1, 2].

2.2. Related Theories in Object Detection and Computer Vision

The theoretical underpinnings of object detection in computer vision rest on several key concepts. First, Feature
Extraction Theory explains how models identify salient characteristics from raw images to distinguish objects. Modern
deep learning models, especially convolutional neural networks (CNNs), automate this process by learning hierarchical
feature representations. Moreover, the Multi-Scale Representation Theory supports the need for models like YOLO to
detect objects of varying sizes and scales within complex scenes [15]. Additionally, Data Augmentation Theory posits
that simulating diverse data variations enhances model generalization and robustness by mitigating overfitting [12].

2.3. Application of Deep Learning Techniques in Aquaculture Monitoring

Deep learning techniques, particularly CNNs, have revolutionized aquaculture monitoring. Object detection models
like YOLO have advanced through multiple versions (e.g., YOLOv3, YOLOv4, YOLOV5), progressively improving
detection accuracy and computational efficiency [7, 13]. These models utilize a single neural network to predict bounding
boxes and class probabilities directly from images, enabling real-time performance. Data augmentation methods—
including rotation, flipping, and brightness scaling—are standard practices to improve model adaptability to variable
aquaculture conditions [3, 16].

2.4. Environmental and Biological Factors Affecting Detection Performance

Environmental conditions such as lighting intensity, water turbidity, and background complexity significantly
influence detection accuracy [10]. Biological variability, such as pigmentation changes during molting in crustaceans,
adds complexity by altering image contrast and texture [17]. To develop robust models, datasets must comprehensively
capture these variations, as supported by findings that tailored training datasets improve model generalization across
diverse aquatic environments [8].

2.5. Dataset Quality and Statistical Validation in Aquaculture Object Detection
High-quality annotated datasets with balanced class representation and consistent camera angles enhance detection

2677



International Journal of Innovative Research and Scientific Studies, 8(6) 2025, pages: 2676-2684

performance [15, 18]. Statistical validation methods such as ANOVA and t-tests are increasingly employed to rigorously
assess the effects of environmental and biological variables on model outcomes [5] ensuring that reported performance
metrics reflect real influences rather than random variation.

2.6. Research Gaps and Study Rationale

Despite these advances, few studies have systematically examined the combined effects of molting status and
environmental lighting on detection model performance in aquaculture. This study aims to fill this gap by evaluating the
YOLOv5 model’s performance under varying biological and environmental conditions using factorial experimental
design and robust statistical analysis. This approach aligns with recommendations to enhance dataset diversity and
employ multivariate techniques to improve model robustness and real-world applicability [11, 19, 20].

3. Research Model
3.1. The Concept Model and Experimental Design

This study adopted a 2x2 factorial experimental design to systematically assess the performance of a YOLOv5-based
object detection model in counting post-larval redclaw crayfish (Cherax quadricarinatus) under varying biological and
environmental conditions. The two independent factors examined were molting status and aquaculture environment,
resulting in four experimental groups defined as follows:

e Group 1 (G1): Molted crayfish in covered ponds

This group consisted of images capturing crayfish that had recently molted, characterized by a semi-transparent or
lighter exoskeleton, within covered pond environments where lighting intensity was relatively low, averaging 150200 lux.
The combination of low ambient light and reduced pigmentation presented a challenging scenario for object detection due
to diminished contrast and visibility.

e Group 2 (G2): Non-molted crayfish in covered ponds

Comprising crayfish that had not undergone molting, this group exhibited darker pigmentation in covered ponds with
similar low-light conditions as G1. The pigmentation contributed to higher contrast against the background, potentially
facilitating better detection performance despite the environmental constraints.

e Group 3 (G3): Molted crayfish in open-air ponds

This group involved molted crayfish located in open-air ponds where lighting intensity was significantly higher,
ranging from 300 to 600 lux. The increased illumination partly compensated for the translucency of the molted
exoskeleton, improving the visibility of the subjects compared to covered pond conditions.

e Group 4 (G4): Non-molted crayfish in open-air ponds

Representing the most favorable detection scenario, this group featured non-molted crayfish with darker pigmentation
in well-lit, open-air pond environments. The synergy of high lighting levels and pronounced pigmentation resulted in the
highest object detection accuracy across all evaluated metrics.

Each group contained 300 annotated images, creating a balanced and comprehensive dataset of 1,200 images total.
This design allowed for evaluation of both main effects of molting status and environmental lighting, as well as their
interaction, providing insights into how these factors collectively influence the YOLOvS model’s performance [21].

Image Acquisition
Envi tal Performance
nwr_onrpen ) Metrics Detection
Lighting Annotation Performance
- Precision Predictic_)n and
- Recall Analysis Sustainable
Molting Status Augmentation _F1 Score Aquaculture
-mAP@0.5 Monitoring
Training
Experimental Factors YOLOv5 Model
Figure 1.

Conceptual Model.

Figure 1 illustrates the conceptual framework and 2x2 factorial experimental design employed to evaluate the
performance of the YOLOVS5 object detection model. The two independent experimental factors—Environmental Lighting
and Molting Status—feed into the YOLOv5 model workflow, which consists of Image Acquisition, Annotation,
Augmentation, and Training. Model effectiveness is assessed using key performance metrics including Precision, Recall,
F1-score, and mAP@0.5. The results undergo Prediction Analysis, ultimately supporting improved Detection Performance
and Sustainable Aquaculture Monitoring. This integrated design provides a comprehensive understanding of how biological
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and environmental factors influence Al-driven aguaculture monitoring.

3.2. Image Collection and Annotation

The images utilized in this study were acquired under rigorously controlled conditions to ensure data consistency and
validity. A high-resolution digital camera was mounted at a fixed height of 60 centimeters above the pond surface,
establishing a standardized and stable vantage point for capturing post-larval redclaw crayfish (Cherax quadricarinatus)
across all experimental groups. This controlled camera placement minimized variations caused by differing angles or
distances, which could potentially compromise detection accuracy.

To capture representative data encompassing biological and environmental variability, fifteen independent trials were
conducted for each of the four experimental groups. Environmental parameters were maintained constant during each trial
to reduce confounding factors. Illumination levels were quantitatively measured using a digital lux meter, revealing that
covered ponds exhibited lower average illuminance (150-200 lux), whereas open-air ponds demonstrated significantly
higher light intensities (300-600 lux). These measurements were critical for evaluating the influence of lighting conditions
on model performance [21].

Image annotation was conducted manually using Labellmg, an open-source annotation tool widely recognized for
generating precise bounding box labels necessary for supervised training of object detection models. Annotation quality
and inter-rater reliability were rigorously assessed, with an inter-annotator agreement exceeding 90% as verified on a
validation subset, thereby ensuring the reliability and accuracy of the ground truth dataset fundamental for robust model
training and evaluation [22]. Through these systematic procedures of image acquisition and annotation, the dataset
achieved comprehensive coverage and high data quality, enabling a rigorous assessment of YOLOVS’s detection
performance across the specified experimental conditions.

3.3. Data Preprocessing and Augmentation

To improve the robustness and generalizability of the YOLOv5 model for detecting and counting post-larval redclaw
crayfish under various aquaculture conditions, careful data preprocessing and augmentation were applied. High-resolution
images were systematically captured from a fixed position above the ponds to represent different lighting conditions and
molting stages.

Data augmentation included common techniques such as small random rotations (+10°), horizontal and vertical flips,
and brightness adjustments (+20%) to simulate real-world variations in viewpoint, illumination, and environment [12, 16].
These augmentations help the model better handle changes in lighting and the semi-transparent appearance of molted
crayfish, reducing overfitting and improving performance across diverse settings.

Combining well-curated images with effective augmentation strategies strengthens the model’s ability to deliver
accurate and reliable object detection in real aquaculture scenarios.

3.4. Model Architecture and Training

For this study, the YOLOv5s variant—the small and lightweight version of the YOLOv5 family—was chosen due to
its well-established balance between detection speed and accuracy [7]. The model was implemented using the PyTorch
deep learning framework, leveraging the computational power of an NVIDIA RTX 3080 GPU to facilitate efficient
training.

Key training parameters were carefully selected to optimize model performance. Input images were resized to a
resolution of 640 by 640 pixels, providing a standardized input size conducive to effective feature extraction. A batch size
of 16 was used, striking a balance between training stability and GPU memory constraints. The learning rate was set at
0.001 to ensure steady convergence during training across 200 epochs, allowing the model to iteratively refine its detection
capabilities.

The loss function used helps the model learn both to detect if an object is present and to classify it correctly. This
method follows current best practices in object detection, especially for aquaculture applications [4].

The model’s structure has three main parts: Backbone, Neck, and Dense Prediction layers. The Backbone extracts
important features from images of the crayfish groups. The Neck combines and improves these features to better detect
objects at different sizes. The Dense Prediction layers then generate the final bounding boxes and classification results.
This structure offers a good balance of speed and accuracy, making it suitable for detecting crayfish in varied aquaculture
environments, as illustrated in Figure 2.

2679



International Journal of Innovative Research and Scientific Studies, 8(6) 2025, pages: 2676-2684

Backbone Neck Dense Prediction
Redclaw
Crayfish T L
Group 1
Redclaw %
Crayfish %
Group 2
A
Prediction Outputs
Redclaw 1
Crayfish 3
Group 3
oy
Redclaw . . .
Crayfish Convolutional Layer Convolutional Layer Convolutional Layer
Group 4
# V¥ Fully Connect Sparse Prediction YOLOvSs Model’s }
Figure 2.

Model Architecture.

3.5. Evaluation Metrics
The performance of the detection model was assessed using widely accepted metrics in object detection to
comprehensively evaluate both accuracy and robustness. These metrics included:
1. Accuracy: Measures the proportion of correctly predicted outcomes (both positive and negative) relative to the total
number of predictions.
TP+TN

Accuracy = _— Q)
e 3 TP+:['N+FP+FN . L . o
2. Precision: Indicates the proportion of true positive predictions out of all positive predictions made by the model.

High precision reflects fewer false positives.
TP

Precision = o )
3. Recall: Reflects the model's ability to correctly identify all actual positive cases, representing its

sensitivity to relevant outcomes.
Recall = s ®3)

TP+FN
4. F1-Score: Represents the harmonic mean of precision and recall, providing a balanced measure of

the model's overall accuracy, especially useful in cases with class imbalance.
F1-Score - 2 x (Precision x Recall) (4)

(Precision+Recall)
where:
TP : True Positives — Correct positive predictions
TN : True Negatives — Correct negative predictions
FP : False Positives — Incorrect positive predictions
FN : False Negatives — Incorrect negative predictions

5. mMAP@0.5 (Mean Average Precision at Intersection over Union threshold 0.5) is a widely used metric in object
detection that measures the average precision of the model when predicted bounding boxes overlap with ground truth boxes
by at least 50%.

mAP@0.5 = Mean Average Precision at Intersection over Union (loU) threshold of 0.5 (5)

Together with precision, recall, and F1-score, mMAP@0.5 provides a comprehensive assessment of detection quality by
balancing the model’s sensitivity and specificity [8].

3.6. Statistical Analysis

To examine how environmental and biological conditions affect the detection performance of the YOLOv5s model, a
two-way factorial experimental design (2x2) was employed. The independent variables consisted of molting status (molted
vs. non-molted) and pond environment (covered vs. open-air), while the dependent variable was the F1-score, which
quantifies the model’s detection accuracy under each condition.

A two-way Analysis of Variance (ANOVA) was applied to evaluate the main effects of molting status and pond
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environment, as well as their interaction effect on detection performance. This analytical approach is well-suited for
factorial experimental designs involving categorical variables, allowing researchers to assess not only the independent
impact of each factor but also whether the influence of one factor depends on the level of the other. The underlying
statistical model used for the two-way ANOVA can be expressed as:

Vi = Hta;+ B+ (aB)ij + &k (6)

where:

Y is the observed Fl-score for the kkk-th replicate in the iii-th level of molting status and jjj-th level of pond
environment,

M is the overall mean F1-score,

a; is the effect of molting status,

pB; is the effect of pond environment,

(ap);; is the interaction effect between the two factors, and

€;jx IS the random error term assumed to be normally distributed with constant variance.

The analysis was conducted using IBM SPSS Statistics version 26 (IBM Corp., Armonk, NY, USA), in accordance
with standard statistical procedures [23]. When the ANOVA results indicated statistically significant effects (p < 0.05),
Tukey’s Honestly Significant Difference (HSD) test was performed as a post-hoc analysis to identify specific pairwise
group differences across the four treatment conditions. This integrated statistical framework allows for a robust and
interpretable assessment of how molting phase and lighting conditions jointly influence the YOLOv5s model's object
detection performance in aquaculture settings. By leveraging factorial ANOVA and appropriate post-hoc testing, the study
ensures the validity and generalizability of its findings for real-world deployment.

4. Results and Discussion
4.1. Detection Performance Across Experimental Groups

This study employed a dataset of 1,200 meticulously annotated images of post-larval redclaw crayfish (Cherax
quadricarinatus), collected under a 2x2 factorial experimental design. The two factors investigated were molting status
(molted vs. non-molted) and aquaculture environment (covered vs. open-air ponds). Each experimental group contained
300 images, creating a balanced dataset that enabled a comprehensive evaluation of the YOLOvSs model’s detection
performance across varying biological and environmental conditions. Image acquisition was standardized by using a
high-resolution camera positioned 60 centimeters above the pond surface, with light intensity measurements ranging
from 150-200 lux in covered ponds and 300-600 lux in open-air ponds. Bounding box annotations were rigorously
validated to ensure high quality, supporting robust model training and evaluation.

Table 1.
Summary of Experimental Groups.
Molting . Image | Average Light . .
Group Status Environment Count Intensity (Iux) Pigmentation / Body Appearance
Gl Molted Covered pond 300 150-200 S_eml-tran§parent exoskeleton (lighter
pigmentation)
G2 Non- Covered pond 300 150-200 Darker pigmentation
molted
Open-air Semi-transparent exoskeleton (lighter
G3 Molted pond 300 300-600 pigmentation)
G4 Non- Open-air 300 300-600 Darker pigmentation
molted pond

To comprehensively evaluate the detection performance of the YOLOvV5 model under varying biological and
environmental conditions, precision, recall, F1-score, and mean average precision at loU threshold 0.5 (MAP@0.5) were
measured across all four experimental groups. These groups reflect combinations of molting status (molted vs. non-
molted) and pond environment (covered vs. open-air). The results are consolidated in Table 2, which provides a full
comparison of model performance metrics.

Table 2.
Detection Performance Metrics by Group.

Group Molting Status Environment Precision Recall F1-Score MmAP@0.5
Gl Molted Covered 0.84 0.86 0.85 0.82
G2 Non-molted Covered 0.91 0.92 0.92 0.9
G3 Molted Open-air 0.88 0.9 0.89 0.87
G4 Non-molted Open-air 0.94 0.93 0.93 0.91

As depicted in Table 2, detection performance varied notably across groups. Group G4, representing non-molted
crayfish in open-air ponds, achieved the highest scores across all metrics, including an F1-score of 0.93 and mAP@0.5
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of 0.91. This indicates that the combination of high ambient illumination and darker pigmentation significantly enhances
the visibility of crayfish, resulting in more accurate detection.

Conversely, Group G1 (molted crayfish in covered ponds) yielded the lowest metrics, underscoring the difficulty
posed by low lighting and semi-transparent exoskeletons. Group G2 (hon-molted, covered ponds) and Group G3
(molted, open-air ponds) showed intermediate results, suggesting that either biological or environmental enhancement
alone may partially improve model accuracy but is less effective than when combined. This integrated analysis
highlights the significant influence of both molting status and environmental lighting on object detection performance. It
supports the hypothesis that deep learning—based aquaculture monitoring systems benefit from optimized biological and
environmental conditions, ultimately informing best practices for real-world deployment.

4.2. Statistical Analysis of Detection Performance

To evaluate how molting status and environmental lighting influence model performance, a two-way Analysis of
Variance (ANOVA) was conducted using the Fl-score as the dependent variable. The results indicated statistically
significant main effects for both molting status (F(1, 56) = 8.74, p = 0.004) and environmental lighting (F(1, 56) =
10.29, p = 0.002). Notably, a significant interaction effect between the two factors was also detected (F(1, 56) = 5.82, p
=0.019), implying that the detection accuracy of the YOLOV5 model is influenced by the combined effects of biological
pigmentation and ambient lighting.

To better understand this interaction, post-hoc analysis revealed that non-molted crayfish in open-air ponds
exhibited the highest detection performance, whereas molted crayfish in covered ponds showed the lowest. These
findings underscore the importance of both pigmentation contrast and illumination in enhancing object visibility. The
statistical model described in Equation (6) serves as the basis for the two-way ANOVA used to interpret the detection
results shown in Table 3.

In addition, a Pearson correlation analysis was conducted to assess the linear relationship between measured light
intensity (in lux) and F1-score. The analysis demonstrated a strong positive correlation (r = 0.81, p < 0.01), providing
further statistical support for the hypothesis that increased lighting significantly enhances detection performance.

Taken together, the results robustly confirm that both environmental and biological factors have significant and
interactive effects on the accuracy of deep learning—based object detection in aquaculture environments. These findings
align with previous studies emphasizing the influence of visual features and lighting in machine vision performance [5,
9].

Table 3.
Results of Two-Way ANOVA on Detection Performance (F1-Score) According to Molting Status and Lighting Conditions.
Source of Variation F-value df p-value Significance
Molting Status (Biological) 8.74 1,56 0.004 Significant (p <0.01)
Environment (Lighting) 10.29 1,56 0.002 Significant (p < 0.01)
Interaction (Molting x Environment) 5.82 1,56 0.019 Significant (p < 0.05)
Table 4.
Pearson Correlation Between Light Intensity (lux) and F1-Score by Experimental Group and Overall
Group Correlation (r) p-value Sample Size (n) | Interpretation
Gl 0.65** 0.001 300 Moderate positive correlation
G2 0.78** <0.001 300 Strong positive correlation
G3 0.54* 0.012 300 Weak to moderate positive correlation
G4 0.85** <0.001 300 Very strong positive correlation
Overall 0.81 <0.01 1200 Strong positive correlation

Notes: p < 0.01 () and p < 0.05 (*) denote significance levels.; Interpretation reflects the strength of the association between light intensity and detection accuracy.

1.1. Robustness Testing of YOLOV5 Detection Model

The robustness and generalizability of the YOLOvV5s object detection model were evaluated through a series of
controlled tests designed to reflect practical variations encountered in aquaculture environments. These tests examined
the model’s performance under different dataset configurations, image distortions, and hyperparameter changes.

In the first step, cross-validation was conducted using a five-fold approach to assess model consistency across
independent subsets of the dataset. The images were divided into five equal parts, where each fold was used once as a
validation set while the remaining served as the training data. This method helped evaluate the model's ability to
generalize across varying biological appearances and environmental lighting conditions. Results from this procedure
showed that the average F1-score remained stable at 0.90 across all folds, indicating a high degree of consistency in the
model’s detection performance.

The second assessment involved testing the model with images that had been artificially modified to simulate real-
world disturbances. Gaussian noise, blurring, and lighting variations were applied to mimic common aquaculture
challenges such as water turbidity, camera shake, and uneven sunlight. The model achieved an F1-score of 0.84 on noisy
images and 0.82 under lighting variation. Although these scores were slightly lower than the baseline, the detection
performance remained acceptable, suggesting that the model can handle image quality degradation to a reasonable
extent.
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In the final test, the effect of input image resolution on detection accuracy was examined. The original image
resolution of 640x640 pixels was reduced to 512x512 pixels to observe how lower visual detail affects the model. The
F1-score dropped to 0.80, showing a notable decline in performance. This result emphasizes the importance of
maintaining sufficient resolution, especially when detecting features like semi-transparent crayfish post-molting.

These results demonstrate that while the YOLOv5s model maintains good performance across most conditions, it is
more sensitive to reductions in image resolution than to moderate environmental noise or lighting changes. This
information is valuable for guiding the implementation of the model in operational aquaculture systems where conditions
may not always be optimal.

Table 5.
Robustness Test Results Comparing Baseline and Perturbed Conditions.

Test Condition Precision Recall F1-Score | Notes

Baseline (Original Dataset) 0.91 0.92 0.92 Original training and testing data
Cross-Validation (Average) 0.9 0.91 0.9 k-fold validation, k=5
Noise-Augmented Images 0.85 0.86 0.84 Gaussian noise, blur applied
Variable Lighting Conditions 0.83 0.84 0.82 Simulated lighting variation
Reduced Resolution (512x512) 0.8 0.81 0.8 Input resolution sensitivity

4.3. Discussion and Practical Implications

The results of this study align with prior aquatic object detection research, highlighting the adaptability of YOLO
architectures to challenging and non-ideal imaging conditions commonly encountered in aquaculture environments [5,
9]. The sensitivity analysis offers practical guidance for tuning hyperparameters to balance accuracy and computational
efficiency, which is essential for deploying Al solutions on resource-constrained devices widely used in aquaculture
monitoring.

Robustness tests confirm that the YOLOv5s model maintains reliable detection performance even when exposed to
perturbations mimicking real-world conditions, such as noise and variable lighting. Although slight performance declines
were observed under these conditions, they remain within acceptable limits for practical use. This resilience highlights
the model’s suitability for diverse and dynamic aquatic environments.

Despite these strengths, some limitations should be noted. The study focused on a single species at a specific
developmental stage, limiting direct generalizability to multi-species or broader aquaculture systems. Factors such as
water turbidity, camera angles, and occlusions were not explicitly controlled, which could influence detection robustness
in more complex real-world scenarios. Addressing these limitations will be important for future work to expand the
model’s applicability.

A key contribution of this study is bridging a critical gap in the literature by systematically evaluating the combined
effects of environmental lighting and biological pigmentation on Al-based detection performance. Unlike many prior
studies that emphasize controlled lab settings or overlook biological variability, this research integrates factorial
experimental design and rigorous statistical validation to provide actionable insights relevant to real-world farming
conditions.

Practically, these findings have significant implications for the global aquaculture industry, where environmental
heterogeneity—such as turbidity and lighting variability—and biological factors create ongoing monitoring challenges.
The demonstrated robustness and adaptability of YOLOv5-based detection systems position them as scalable, effective
tools for precision aquaculture across varied geographic and operational contexts.

Accurate detection and counting of post-larval redclaw crayfish using Al-powered models enable aquaculture farms
to closely monitor the molting status and overall health of their stock in real time. Early identification of irregularities in
molting or growth patterns can help prevent growth stagnation and related health issues. This timely monitoring supports
proactive farm management, reducing losses and enhancing productivity while promoting sustainable and efficient
aquaculture practices.

International stakeholders—including farm managers, technology providers, and policymakers—can leverage these
insights to improve monitoring accuracy and operational efficiency. Farms in regions with fluctuating environmental
conditions can confidently adopt these robust Al models, reducing labor-intensive manual counts and improving stock
management. Moreover, awareness of model sensitivity to image quality encourages targeted investments in optimized
imaging technologies and environmental controls.

From a broader perspective, integrating Al-powered monitoring aligns with global sustainable development
initiatives, notably the United Nations’ Sustainable Development Goals 14 (Life Below Water) and 12 (Responsible
Consumption and Production). These technologies support sustainable aquaculture by enabling accurate stock
assessments, reducing environmental impact, and enhancing productivity. Policymakers and funding agencies are
encouraged to support digital infrastructure development and capacity-building programs to facilitate widespread
adoption.

5. Conclusion
This study advances understanding of the factors influencing the performance of Al-driven aquaculture monitoring
systems, specifically focusing on the YOLOvV5 model for detecting post-larval redclaw crayfish. The findings emphasize
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that both environmental and biological variables significantly affect detection accuracy, underscoring the necessity of
incorporating real-world variability into model training and evaluation.

Importantly, the robustness of the YOLOv5s model under diverse perturbations—including noise and lighting
fluctuations—demonstrates its practical viability across a wide range of aquaculture settings. This positions YOLOVS5 as a
reliable tool capable of supporting sustainable and efficient aquaculture operations.

Strategically, this research highlights the critical interplay between technological capability and environmental context,
suggesting that successful Al applications in aquaculture rely not only on advanced algorithms but also on tailored
adaptations to site-specific conditions.

Future research should explore broader ecosystem applications, including multi-species detection and integration with
real-time edge computing platforms. Longitudinal studies evaluating operational impacts, economic benefits, and
scalability of Al-based monitoring solutions will further guide industry adoption and policymaking.
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